Abstract
We report the direct current (DC) and microwave performance of BeMgZnO/ZnO heterostructure field effect transistors (HFETs) on sapphire substrates. The devices fabricated using Al2O3 as the gate dielectric with a gate length of 1.5 um and a gate width of 75 um exhibited a pinch-off voltage of −4.0 V and a maximum peak transconductance of 63 mS/mm. A current gain cutoff frequency fT of 5.0 GHz was achieved, highest among ZnO-based FETs. The corresponding electron velocity of above 1E7 cm/s estimated based on the gate transit time inches closer to the theoretical peak velocity in ZnO (3.5E7 cm/s). This value is significantly higher than the previously reported values in ZnO-based HFETs, which is attributed to the two-dimensional electron gas (2DEG) concentration at or near the resonance of longitudinal optical (LO)-phonon and plasmon frequencies as well as the improved quality of the heterostructure owing to optimized ZnO buffer growth and BeO and MgO alloying in the barrier. To probe the high-frequency response of the HFETs, extrinsic and intrinsic parameters of the small-signal equivalent circuit for the BeMgZnO/ZnO HFETs were investigated using the hybrid extraction method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.