Abstract

Reverse breakdown voltages larger than 1 kV have been reported for both unterminated Ga2O3 vertical rectifiers (1000- 1600 V) and field-plated Schottky diodes (1076-2300 V) with an epi thickness of 8-20 μm. If the doping is in the 1016 cm-3 range, the breakdown is usually in the 500-800V regime. Furthermore, the switching characteristics of discrete Ga2O3 vertical Schottky rectifiers exhibited reverse recovery times in the range of 20 to 30 ns. Large area (up to 0.2 cm2 ) Ga2O3 rectifiers were fabricated on a Si-doped n-Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+ Ga2O3 (001) substrate. A forward current of 2.2 A was achieved in single-sweep voltage mode, a record for Ga2O3 rectifiers. The on-state resistance was 0.26 Ω·cm2 for these largest diodes, decreasing to 5.9 × 10-4 Ω·cm2 for 40x40 μm2 devices. We detail the design and fabrication of these devices. In addition, an inductive load test circuit was used to measure the switching performance of field-plated, edge-terminated Schottky rectifiers with a reverse breakdown voltage of 760 V (0.1 cm diameter, 7.85x10-3 cm2 area) and an absolute forward current of 1 A on 8 Μm thick epitaxial β-Ga2O3 drift layers. These devices were switched from 0.225 A to -700 V with trr of 82 ns, and from 1 A to -300 V with trr of 64 ns and no significant temperature dependence up to 125°C. There was no significant temperature dependence of trr up to 150°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call