Abstract
In this paper, design of a capacitor semiactive hybrid source for powering pulsed power loads based on dc power filter principle is presented. The system consists of an energy source connected directly to a load, supported by a bidirectional buck–boost dc–dc converter interfaced supercapacitor (SC). The converter is controlled such that the SC supplies the dynamic component of the load power, leaving the energy source to supply a near-constant power to satisfy average load demand. The control algorithm is adopted from the power filter theory, allowing to reduce the stress of an energy rich source despite operating under a high-power demanding load. Moreover, the SC-load voltage matching is not required and the control algorithm does not require load current sensing. Instead, energy source current of a much lower amplitude is necessary. The SC sizing methodology is proposed, and topology issues aiming to minimize the SC are discussed as well. Compared with a passive hybrid, the proposed system utilizes much lower capacitance at the expense of additional power electronics. Experimental results are presented to demonstrate the feasibility of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.