Abstract

Matrix factorisations describe B-type boundary conditions in N=2 supersymmetric Landau-Ginzburg models. At the infrared fixed point, they correspond to superconformal boundary states. We investigate the relation between boundary states and matrix factorisations in the Grassmannian Kazama-Suzuki coset models. For the first non-minimal series, i.e. for the models of type SU(3)_k/U(2), we identify matrix factorisations for a subset of the maximally symmetric boundary states. This set provides a basis for the RR charge lattice, and can be used to generate (presumably all) other boundary states by tachyon condensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.