Abstract
Very few explicit inflationary scenarios are known to generate a large bispectrum of orthogonal shape. Dirac-Born-Infeld Galileon inflation, in which an induced gravity term is added to the DBI action, is one such model. We formulate it in the language of the effective field theory of inflation by identifying the unitary gauge operators that govern the behavior of its cosmological fluctuations. We show how to recover rather easily from this its power spectrum and bispectrum, which we calculated previously using standard cosmological perturbation theory. We push our calculations up to the determination of the fourth-order action and of the trispectrum, in which shapes absent in k-inflation arise due to the presence of higher-order derivative operators. We finally discuss the combined constraints set on this model by current observational bounds on the bispectrum and trispectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.