Abstract
Accurately locating and analysing surgical instruments in laparoscopic surgical videos can assist doctors in postoperative quality assessment. This can provide patients with more scientific and rational solutions for healing surgical complications. Therefore, we propose an end-to-end algorithm for the detection of surgical instruments. Dual-Branched Head (DBH) and Overall Intersection over Union Loss (OIoU Loss) are introduced to solve the problem of inaccurate surgical instrument detection, both in terms of localization and classification. An effective method (DBHYOLO) for the detection for laparoscopic surgery in complex scenarios is proposed. This study manually annotates a new laparoscopic gastric cancer resection surgical instrument location dataset LGIL, which provides a better validation platform for surgical instrument detection methods. The proposed method's performance was tested using the m2cai16-tool-locations, LGIL, and Onyeogulu datasets. The mean Average Precision (mAP) values obtained were 96.8%, 95.6%, and 98.4%, respectively, which were higher than the other classical models compared. The improved model is more effective than the benchmark network in distinguishing between surgical instrument classes with high similarity and avoiding too many missed detection cases. In this paper, the problem of inaccurate detection of surgical instruments is addressed from two different perspectives: classification and localization. And the experimental results on three representative datasets verify the performance of DBH-YOLO. It is shown that this method has a good generalization capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of computer assisted radiology and surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.