Abstract
The homogeneity of a helium dielectric barrier discharge, working at atmospheric pressure and containing oxygen as contaminant, is assessed by mapping the spatial distribution of oxygen metastable atoms in relation to the uniformity of surface properties. Tunable diode laser absorption spectroscopy is used to monitor the time evolution of the absorption coefficient corresponding to the oxygen metastable atoms on the 35S2 level, as a function of the laser absorbing path, whereas bi-dimensional Abel transform is used to obtain local information on the space distribution of the metastable atoms in the discharge. The radial distribution of the surface properties is investigated using atomic force microscopy, contact angle measurement and X-ray photoelectron spectroscopy. The results show that the oxygen metastables density has complex space–time behavior, and the spatial distribution of the reactive species yields specific radial profile of the surface properties of a polymer film depending on the treatment time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.