Abstract

This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar + O2 and Ar + N2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100 sccm) and for different modification times (0.5–7 min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar + O2 plasma for 1 min under 70 cm3/min O2 flow rate (71.077° ± 3.578) showed a 18.83% decrease compare to unmodified samples’ CA value (84.463° ± 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar + O2 (1 min 70 sccm) and Ar + N2 (40 s 70 sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar + O2 and Ar + N2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar + O2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call