Abstract

With the emergence of COVID-19 disease in 2019, machine learning (ML) techniques, specifically deep learning networks (DNNs), played a key role in diagnosing the disease in the medical industry due to their superior performance. However, the computational cost of deep learning networks (DNNs) can be quite high, making it necessary to often outsource the training process to third-party providers, such as machine learning as a service (MLaaS). Therefore, careful consideration is required to achieve robustness in DNN-based systems against cyber-security attacks. In this paper, we propose a method called the dropout-bagging (DB-COVIDNet) algorithm, which works as a robust defense mechanism against poisoning backdoor attacks. In this model, the trigger-related features will be removed by the modified dropout algorithm, and then we will use the new voting method in the bagging algorithm to achieve the final results. We considered AC-COVIDNet as the main inducer of the bagging algorithm, which is an attention-guided contrastive convolutional neural network (CNN), and evaluated the performance of the proposed method with the malicious COVIDx dataset. The results demonstrated that DB-COVIDNet has strong robustness and can significantly reduce the effect of the backdoor attack. The proposed DB-COVIDNet nullifies backdoors before the attack has been activated, resulting in a tremendous reduction in the attack success rate from 99.5% to 3% with high accuracy on the clean data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call