Abstract
This article utilizes the Canny edge extraction algorithm based on contour curvature and the cross-correlation template matching algorithm to extensively study the impact of a high-repetition-rate CO2 pulsed laser on the target extraction and tracking performance of an infrared imaging detector. It establishes a quantified dazzling pattern for lasers on infrared imaging systems. By conducting laser dazzling and damage experiments, a detailed analysis of the normalized correlation between the target and the dazzling images is performed to quantitatively describe the laser dazzling effects. Simultaneously, an evaluation system, including target distance and laser power evaluation factors, is established to determine the dazzling level and whether the target is recognizable. The research results reveal that the laser power and target position are crucial factors affecting the detection performance of infrared imaging detector systems under laser dazzling. Different laser powers are required to successfully interfere with the recognition algorithm of the infrared imaging detector at different distances. And laser dazzling produces a considerable quantity of false edge information, which seriously affects the performance of the pattern recognition algorithm. In laser damage experiments, the detector experienced functional damage, with a quarter of the image displaying as completely black. The energy density threshold required for the functional damage of the detector is approximately 3 J/cm2. The dazzling assessment conclusions also apply to the evaluation of the damage results. Finally, the proposed evaluation formula aligns with the experimental results, objectively reflecting the actual impact of laser dazzling on the target extraction and the tracking performance of infrared imaging systems. This study provides an in-depth and accurate analysis for understanding the influence of lasers on the performance of infrared imaging detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.