Abstract

We discuss the results of an analysis of digital high-sensitivity ground-based observations of very low frequency (VLF) emissions, carried out in Northern Finland (L = 5.3) in May–June 2012. During this period of time, we found that three high-speed solar wind streams approached the Earth’s magnetosphere and at the front of these fluxes long-lasting intense daytime bursts of VLF emissions were generated in two frequency bands: above and below ∼2.5 kHz. At frequencies above ∼2.5–3.0 kHz, there were VLF hiss waves, the temporal structure of which consisted of a quasi-periodic sequence of separate stronger spots of noise signals. The low-frequency band was represented by chorus waves, superimposed on intense hiss emissions at frequencies below ∼1.5 kHz. The high-frequency (f > 2.5 kHz) waves were elliptic and, predominately, left-hand polarized and the low-frequency waves were right-hand polarized. It was supposed that high-frequency VLF hiss waves were generated at L 5. We discuss a possible scenario of the generation and propagation of the VLF emissions observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call