Abstract

AbstractFlux transfer events (FTEs) are transient magnetic flux ropes at Earth's dayside magnetopause formed due to magnetic reconnection. As they move across the magnetopause surface, they can generate disturbances in the ultralow frequency (ULF) range, which then propagate into the magnetosphere. This study provides evidence of ULF waves in the Pc2 wave frequency range (>0.1 Hz) caused by FTEs during dayside reconnection using a global 3D hybrid‐Vlasov simulation (Vlasiator). These waves resulted from FTE formation and propagation at the magnetopause are particularly associated with large, rapidly moving FTEs. The wave power is stronger in the morning than afternoon, showing local time asymmetry. In the pre and postnoon equatorial regions, significant poloidal and toroidal components are present alongside the compressional component. The noon sector, with fewer FTEs, has lower wave power and limited magnetospheric propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.