Abstract

<p>The Defense Meteorological Satellite Program (DMSP) Special Sensor Ultraviolet Spectrographic Imager (SSUSI) has observed the large-scale high-latitude dayside aurora (HiLDA) during its long lifetime of hours. HiLDA has dynamical changes in form, size, location, and development of fine structures. However, the associated electrodynamics is not fully understood. In general, HiLDA occurs in the dayside polar cap during IMF By+ (By-) prevailing conditions in the sunlit northern (southern) hemisphere.  The prevailing conditions drive strong upward field-aligned current in the polar cap. Within the upward field-aligned current region, the field-aligned potential drop can be set up and accelerate the electrons, forming the monoenergetic electron precipitation (up to 10s keV) and producing HiLDA.</p><p> </p><p>This study investigates the ionospheric flows, currents, and auroral precipitation in association with HiLDA, benified from the simultaneous measurements from the DMSP satellites, the AMPERE project, and ground-based magnetometers and SuperDARN coherent radars. We will show HiLDA interacts with duskside oval-aligned arcs or transpolar arcs. The interactions are associated with the cusp and the dayside reconnection at the duskside flank/high latitudes. The reconnection produces strong dusk-dawn convection with flow shears in the polar cap, which generates the upward Region 0 current. We find that HiLDA is formed in the high-latitude part of the upward Region 0 current. We apply the Knight relation and identify the lobe electrons (< 0.3 cm<sup>-3</sup>) as the source of HiLDA. The fine structures revealed in the emission intensity of HiLDA may suggest the uneven distribution of the electron density in the high-latitude lobe.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.