Abstract

BackgroundCrossing open water instead of following the coast(line) is one way for landbirds to continue migration. However, depending on prevailing weather and the birds’ physiological conditions, it is also a risky choice. To date, the question remains as to which interplay between environmental and physiological conditions force landbirds to stop on remote islands. We hypothesise that unfavourable winds affect lean birds with low energy resources, while poor visibility affects all birds regardless of their fuel loads.MethodsTo test this hypothesis, we caught 1312 common blackbirds Turdus merula stopping over on Helgoland during autumn and spring migration. Arrival fuel load was measured using quantitative magnetic resonance technology. Weather parameters (wind and relative humidity as a proxy for visibility) were interpolated for the night before arrival. Further, we calculated whether caught individuals would have successfully crossed the North Sea instead of landing on Helgoland, depending on wind conditions.ResultsBoth wind and relative humidity the night before arrival were correlated with arrival fuel load. After nights with strong headwinds, birds caught the following day were mostly lean, most of which would not have managed to cross the sea if they had not stopped on Helgoland. In contrast, fat birds that could have successfully travelled on were caught mainly after nights with high relative humidity (≥ 80%). Furthermore, the rate of presumably successful flights was lower due to wind: although only 9% of all blackbirds captured on Helgoland had insufficient fuel loads to allow safe onward migration in still air, real wind conditions would have prevented 30% of birds from successfully crossing the sea during autumn and 21% during spring migration.ConclusionsWe were able to decipher how physiological condition, wind and relative humidity partially force blackbirds to stop on a remote island. Adverse winds tend to affect lean birds with low energy resources, while poor visibility can affect blackbirds, regardless of whether the arrival fuel load was sufficient for onward flight. Our findings will help to understand different migratory strategies and explain further questions like migration timing.

Highlights

  • Crossing open water instead of following the coast(line) is one way for landbirds to continue migration

  • Depending on the migratory strategy used, the birds’ physiological conditions and environmental conditions, the open sea may even act as an ecological barrier [5,6,7]

  • In order to disentangle the effects of wind and birds’ fuel loads, we investigated whether the birds already had sufficient fuel loads at arrival that would theoretically allow them to reach the coastal destinations under still air

Read more

Summary

Introduction

Crossing open water instead of following the coast(line) is one way for landbirds to continue migration. Crossing the open sea can bear a high mortality risk if landbirds make navigational errors, deplete their fuel loads too early and/or face sudden unfavourable weather conditions [8, 9]. The latter can lead to poor or deteriorating flight conditions and even hinder the continuation of migration by causing “Zugstau”, i.e. local accumulation of migrants in a certain area due to a weather-related interruption of migration [10,11,12]. Successful crossing of a barrier is closely related to supportive weather conditions [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call