Abstract

It has been stated in the literature that the case of maximal mixing angle for \nu_e leads to no day-night effect for solar neutrinos and an energy independent flux suppression of 1/2. While the case of maximal mixing angle and \Delta m^2 in the MSW range does lead to suppression of the electron neutrinos reaching the earth from the sun by P_S=1/2, the situation is different for neutrinos that have passed through the earth. We make the pedagogical point that, just as with smaller mixing angles, the earth regenerates the |\nu_1> state from the predominantly |\nu_2 > state reaching the earth, leading to coherent interference effects. This regeneration can lead to a day-night effect and an energy dependence of the suppression of solar electron neutrinos, even for the case of maximal mixing. For large mixing angles, the energy dependence of the day-night asymmetry depends heavily on Delta m^2. With a sufficiently sensitive measurement of the day-night effect, this energy dependence could be used to distinguish among the large mixing angle solutions of the solar neutrino problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.