Abstract
The daylighting environment in university gymnasiums affects daily teaching and sports training. However, direct sunlight, glare, and indoor overheating in summer are common problems. Semi-transparent photovoltaic glass can solve these issues by replacing shading facilities, blocking solar radiation, and generating electricity. This study examines the influence of different types of CdTe semi-transparent film photovoltaic glass on the daylighting environment of six typical university gymnasium skylights. The optimal types of CdTe semi-transparent film photovoltaic glass are determined by dynamic daylighting performance metrics DA, DAcon, DAmax, and UDI. The results show that, for instance, centralized rectangular skylights benefit from the 50–60% transmittance type, while centralized X-shaped skylights require the 70–80% transmittance type to enhance indoor daylighting. The research results offer specific recommendations based on skylight shapes and photovoltaic glass types and can provide a reference for the daylighting design of university gymnasium buildings with different forms of photovoltaic skylights in the future.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.