Abstract

The present study investigates the effects of visible light transmittance in glazing and window-to-wall ratios on the ground floor daylighting performance in a two-storey residential building in a warm-humid climate. The metrics used to optimize daylighting performance with minimal glare are useful daylight illuminance, annual sunlight exposure, and spatial daylight autonomy. The daylighting performance of a residential building is assessed by empirical method and Design-Builder simulation, focusing on overcast sky situations. The useful daylight illuminance is the primary metric for analysing the amount of daylight throughout the year. Annual sunlight exposure and spatial daylight autonomy complement useful daylight illuminance in evaluating the daylighting performance. A window-to-wall ratio of 16%, a visible light transmittance of 0.62, and a glare of 0.52 can meet the daylighting requirements and standards. A design change in the window position helps to obtain annual sunlight exposure within 10% while maintaining high daylighting performance. When installed in the upper position of the wall with a higher sill and lintel height, glazing with a window-to-wall ratio of 16% and a visible light transmittance of 0.62 functions well without creating glare. The significant findings benefit all stakeholders in improving daylighting strategies in tropical climates and satisfying building standards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call