Abstract

In this paper, indoor illuminance distributions with a microstructured prismatic film glazing in a deep depth manufacture space were measured. The measured illuminance data with the prismatic film glazing were compared to Radiance simulation results with a conventional glazing. This study shows that using prismatic film glazing at side windows can improve indoor illuminance levels and illuminance uniformity for inner spaces. The technology can work effectively for deep depth manufacture spaces under a clear sky but less effective under an overcast sky for improving illuminance levels and illuminance uniformity. Luminance image and glare metrics were also compared between the prismatic film glazing and conventional glazing. The angle-dependent transmittance properties of light-scattering for the prismatic films with direct sunlight present a different luminance pattern from the conventional glazing with higher peak luminance values but smaller peak luminance areas. In general, the simulated glare metrics with the prismatic film glazing presented lower DGP and DGI glare index than those with the conventional glazing. The time and orientation which may cause high glare metrics and possible discomfort glare with the prismatic film glazing in the deep depth manufacture space are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call