Abstract

Transitory starch is stored during the day inside chloroplasts and broken down at night for export. Maltose is the primary form of carbon export from chloroplasts at night. We investigated the influence of daylength and circadian rhythms on starch degradation and maltose metabolism. Starch breakdown was faster in plants of Arabidopsis (Arabidopsis thaliana) ecotype Wassilewskija growing in long days. Transcript levels of genes encoding enzymes involved in starch degradation and maltose metabolism showed a strong diurnal rhythm. Under altered photoperiods, the transcript levels and the rate of starch degradation changed within one day/night cycle. However, the amount of proteins involved in starch degradation was maintained relatively constant throughout the day/night cycle. To investigate whether the diurnal cycling of the transcript levels is only a response to light or is also regulated by a circadian clock, we measured the amount of messenger RNAs in Arabidopsis leaves under continuous light and continuous darkness. The expression of genes encoding starch degradation-related enzymes was under very strong circadian control in continuous light. Under continuous light, the amount of maltose also showed a strong endogenous rhythm close to 24 h, indicating that maltose metabolism is under circadian control. Light is necessary for the cycling of transcript levels and maltose levels. Under continuous darkness, these genes were barely expressed, and no cycling of maltose levels was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.