Abstract

Energy hubs (EHs) are units in which multiple energy carriers are converted, conditioned and stored to simultaneously supply different forms of energy demands. In this research, the objective is to develop a new stochastic model for unit commitment in EHs including an intelligent electric vehicle (EV) parking lot, boiler, photovoltaic (PV) module, fuel cell, absorption chiller, electric heat pump, electric/thermal/cooling storage systems, with electricity and natural gas (NG) as inputs and electricity, heat, cooling and NG as demands. The uncertainties of demands, PV power and initial energy of EV batteries are modeled with Monte Carlo Simulation. The effect of demand response and demand participation factors as well as effect of EVs and storage systems on EH operation are investigated. The results indicate that thermal demand response is more effective than electric and cooling demand response; as it decreases EH operation cost by 12%, while electric demand response and cooling demand response decrease it respectively by 9.3% and 4.2%. The results show that at low electric/thermal/cooling demand participation factors, an increase in participation factor sharply decreases EH operation cost, while the same amount of increase at higher participation factors leads to a smaller decrease in operation cost. The results also indicate that thermal storage system and cooling storage system have significant effect on reduction of EH operation cost, while the effect of electric storage system is trivial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call