Abstract

In future electric distribution networks, demand flexibility offered by controllable loads will play a key role for the effective transition towards the smart grids. Electric heat pumps are flexible loads whose operation can be controlled, to some extent, to foster the efficient operation of the distribution grids. This paper presents an optimization algorithm that defines a smart day-ahead scheduling of electric heat pumps aimed at achieving power peak shaving in the distribution grid, while providing customers with the desired thermal comfort over the day. The proposed optimization relies upon a Mixed Integer Linear Programming approach and allows defining both the time schedule and the operating points of the heat pump, guaranteeing an energy efficient solution for the customers. Performed tests show the benefits achievable by means of the proposed optimal scheduling both at the distribution grid level and at the customer side, proving the goodness of the conceived solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.