Abstract

Various machine learning-based methods and techniques are developed for forecasting day-ahead electricity prices and spikes in deregulated electricity markets. The wholesale electricity market in the Province of Ontario, Canada, which is one of the most volatile electricity markets in the world, is utilized as the case market to test and apply the methods developed. Factors affecting electricity prices and spikes are identified by using literature review, correlation tests, and data mining techniques. Forecasted prices can be utilized by market participants in deregulated electricity markets, including generators, consumers, and market operators. A novel methodology is developed to forecast day-ahead electricity prices and spikes. Prices are predicted by a neural network called the base model first and the forecasted prices are classified into the normal and spike prices using a threshold calculated from the previous year’s prices. The base model is trained using information from similar days and similar price days for a selected number of training days. The spike prices are re-forecasted by another neural network. Three spike forecasting neural networks are created to test the impact of input features. The overall forecasting is obtained by combining the results from the base model and a spike forecaster. Extensive numerical experiments are carried out using data from the Ontario electricity market, showing significant improvements in the forecasting accuracy in terms of various error measures. The performance of the methodology developed is further enhanced by improving the base model and one of the spike forecasters. The base model is improved by using multi-set canonical correlation analysis (MCCA), a popular technique used in data fusion, to select the optimal numbers of training days, similar days, and similar price days and by numerical experiments to determine the optimal number of neurons in the hidden layer. The spike forecaster is enhanced by having additional inputs including the predicted supply cushion, mined from information publicly available from the Ontario electricity market’s day-ahead System Status Report. The enhanced models are employed to conduct numerical experiments using data from the Ontario electricity market, which demonstrate significant improvements for forecasting accuracy.

Highlights

  • 1.1 Electricity MarketsElectricity may be considered as a special type of commodity whose generation and consumption occur simultaneously

  • The base model is improved by using multi-set canonical correlation analysis (MCCA), a popular technique used in data fusion, to select the optimal numbers of training days, similar days, and similar price days and by numerical experiments to determine the optimal number of neurons in the hidden layer

  • It is concluded that price forecasting accuracies vary significantly across the electricity markets depending upon the market volatility and operating structure

Read more

Summary

Introduction

1.1 Electricity MarketsElectricity may be considered as a special type of commodity whose generation and consumption occur simultaneously. Twenty nuclear power units were installed across the province during the period from 1960 to 1990 In this Chapter, a novel methodology is presented to forecast day-ahead electricity spikes and prices using neural networks. These reforecasted spike prices are re-constructed along with normal prices from the enhanced base model to achieve overall day-ahead forecasting. Various forecasting accuracy measures are calculated to evaluate the performance of the enhanced model

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call