Abstract
Origin–destination (O–D) demand is a critical component in both online and offline dynamic traffic assignment (DTA) systems. Recent advances in real-time DTA applications in large networks call for robust and efficient methodologies for online O–D demand estimation and prediction. This study presents a day-to-day learning framework for a priori O–D demand, along with a predictive data-driven O–D correction approach for online consistency between predicted and observed (sensor) values. When deviations between simulation and real world are observed, a consistency-checking module initiates O–D demand correction for the given prediction horizon. Two predictive correction methods are suggested: 1) simple gradient method, and 2) Taylor approximation method. New O–D demand matrices, corrected for 24 simulation hours by the correction module, are used as the updated a priori demand for the next day simulation. The methodology is tested in a real-world network, Kansas City, MO, for a 3-day period. Actual tests in real-world networks of online DTA systems have been very limited in the literature and in actual practice. The test results are analyzed in time and space dimensions. The overall performance of observed links is assessed. To measure the impact of O–D correction and daily O–D updates, traffic prediction performance with the new modules is compared with the base case. Predictive O–D correction improves prediction performance in a long prediction window. Also, daily updated O–D demand provides better initial states for traffic prediction, enhancing prediction in short prediction windows. The two modules collectively improve traffic prediction performance of the real-time DTA system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.