Abstract

Chrysanthemum (Chrysanthemum morifolium) is a short-day plant, which flowers when the night length is longer than a critical minimum. Flowering is effectively inhibited when the required long-night phase is interrupted by a short period of exposure to red light (night break; NB). The reversal of this inhibition by subsequent exposure to far-red (FR) light indicates the involvement of phytochromes in the flowering response. Here, we elucidated the role of light quality in photoperiodic regulation of chrysanthemum flowering, by applying a range of different conditions. Flowering was consistently observed under short days with white light (W-SD), SD with monochromatic red light (R-SD), or SD with monochromatic blue light (B-SD). For W-SD, NB with monochromatic red light (NB-R) was most effective in inhibiting flowering, while NB with monochromatic blue light (NB-B) and NB with far-red light (NB-FR) caused little inhibition. In contrast, for B-SD, flowering was strongly inhibited by NB-B and NB-FR. However, when B-SD was supplemented with monochromatic red light (B+R-SD), no inhibition by NB-B and NB-FR was observed. Furthermore, the inhibitory effect of NB-B following B-SD was partially reversed by subsequent exposure to a FR light pulse. The conditions B-SD/NB-B (no flowering) and B+R-SD/NB-B (flowering) similarly affected the expression of circadian clock-related genes. However, only the former combination suppressed expression of the chrysanthemum orthologue of FLOWERING LOCUS T (CmFTL3). Our results suggest the involvement of at least 2 distinct phytochrome responses in the flowering response of chrysanthemum. Furthermore, it appears that the light quality supplied during the daily photoperiod affects the light quality required for effective NB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call