Abstract
Drift-feeding salmonids in boreal streams face temperatures below physical optima for extensive periods of the year. Because juvenile salmonids react to low water temperatures by becoming nocturnal, knowledge about their foraging ability at low light intensities in cold water is needed to accurately estimate energy intake during non-summer conditions. In a laboratory stream channel, we studied temperature effects on the drift-feeding behaviour of juvenile Atlantic salmon, brown trout, and European grayling in simulated daylight and moonlight at temperatures ranging from 2 °C to 11 °C. Prey capture probability was positively related to temperature, but the temperature dependence did not agree with predictions of the Metabolic Theory of Ecology. Furthermore, reaction distance was positively related to temperature for the three species, which may be one of the underlying mechanisms responsible for the temperature effects on prey capture probability. Overall, the three species had similar capture rates at the different temperature and light levels, although there were species differences. European grayling had a slightly higher prey capture probability than brown trout, and brown trout had a shorter reaction distance than Atlantic salmon and European grayling. These results have implications for both energetics-based drift-foraging theory and for studies of winter ecology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.