Abstract
Five pairs of new merosesquiterpenoid enantiomers, named dauresorcinols A−E (1−5), were isolated from the leaves of Rhododendron dauricum. Their structures were elucidated by comprehensive spectroscopic data analysis, quantum chemical calculations, Rh2(OCOCF3)4-induced ECD, and single-crystal X-ray diffraction analysis. Dauresorcinols A (1) and B (2) possess two new merosesquiterpene skeletons bearing an unprecedented 2,6,7,10,14-pentamethyl-11-oxatetracyclo[8.8.0.02,7.012,17]octadecane and a caged 15-isohexyl-1,5,15-trimethyl-2,10-dioxatetracyclo[7.4.1.111,14.03,8]pentadecane motif, respectively. Plausible biosynthetic pathways of 1−5 are proposed involving key oxa-electrocyclization and Wagner−Meerwein rearrangement reactions. (+)/(−)-1 and 3−5 showed potent α-glucosidase inhibitory activity, 3 to 22 times stronger than acarbose, an antidiabetic drug targeting α-glucosidase. Docking results provide a basis to design and develop merosesquiterpenoids as potent α-glycosidase inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.