Abstract

Daunorubicin, an anticancer drug, induces primarily mammary adenocarcinoma in Sprague-Dawley rats. We investigated daunorubicin-induced DNA lesions in enzymatically isolated mammary epithelial cells and hepatocytes from 7–8-week-old female Sprague-Dawley rats. Differences were observed in the type and quantity of DNA lesions in mammary epithelial cells and hepatocytes as determined by alkaline elution analysis. DNA single-strand breaks and proteinase-K-sensitive cross-linking lesions were observed in mammary epithelial cells. Hepatocytes appeared to have significantly lower relative frequencies of single-strand breaks than mammary epithelial cells when treated with daunorubicin (1.5–10.0 μg/10 6 cells). Hepatocytes displayed two types of cross-link. One form was sensitive to proteinase-K digestion, whereas the other form was insensitive. The metabolism of daunorubicin to the aglycone metabolites was substantially lower in mammary cells than in hepatocytes. However, the total uptake of the drug was similar in these two cell types. A metabolite, 7-deoxydaunorubicinol aglycone, was unable to induce single-strand breaks or cross-linking lesions in mammary epithelial cells. Both cell types exhibited a similar ability to repair radiation-induced single-strand breaks of DNA. However, the mammary cells may be less able to repair daunorubicin-mediated DNA damage. These results revealed that mammary epithelial cells are less able to metabolize the active mutagen/carcinogen, daunorubicin, than are hepatocytes. This, coupled with the observations of greater apparent DNA damage in mammary cells, may be of primary importance in the drug-induced carcinogenicity in the rat mammary tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.