Abstract

The anthracycline antibiotic daunorubicin is reported to induce apoptosis in cells by triggering ceramide generation through de novo synthesis or sphingomyelin hydrolysis. Treatment of human umbilical vein endothelial cells (HUVEC) with daunorubicin markedly decreased the mRNA expression and protein release of plasminogen activator inhibitor-1 (PAI-1). This cellular event was accompanied by a significant increase in the total ceramide content in HUVEC. On the other hand, tumor necrosis factor (TNF)-α treatment of HUVEC led to an increase in both PAI-1 mRNA expression and protein release, and an enhancement of total ceramide content was also observed. The stimulating effect of TNF-α on PAI-1 synthesis was attenuated by the pretreatment of HUVEC with daunorubicin. Interestingly, the daunorubicin-induced increase in ceramide content was blocked by addition of the potent ceramide synthase inhibitor fumonisin B 1, while the TNF-α-induced ceramide increase was not affected by this drug. Fumonisin B 1 treatment restored the daunorubicin-induced decrease in PAI-1 release to approximately 70% of the control, but did not affect the TNF-α-induced increase in PAI-1 release. Thus, these data imply the possibility that the subcellular topology of ceramide production determines its lipid mediator function in the regulation of PAI-1 synthesis in HUVEC, because both TNF-α and daunorubicin could increase the ceramide levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.