Abstract

Several studies have suggested that diacylglycerol can affect the induction of apoptosis induced by toxicants and ceramide. The present study demonstrates that clinically relevant concentrations of the chemotherapeutic drugs daunorubicin and mitoxantrone (0.2-1 microM) transiently stimulated concurrently with sphingomyelin-derived ceramide generation and diacylglycerol and phosphorylcholine production within 4 to 10 min via phospholipase C hydrolysis of phosphatidylcholine. Pretreatment of cells with the xanthogenate compound D609, a potent inhibitor of phosphatidylcholine-phospholipase C, led to significant inhibition of drug triggered diacylglycerol and phosphorylcholine production and to a sustained increase in ceramide levels for a period up to 2 h. Moreover, D609 pretreatment induced both cell death and ceramide generation at daunorubicin and mitoxantrone concentrations previously shown to be ineffective (i.e., 0.1 microM). These results underline the importance of diacylglycerol in the regulation of programmed cell death and strongly argue for a balance between apoptotic (ceramide) and survival (diacylglycerol) signal transducers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.