Abstract

Precise dating of viral subtype divergence enables researchers to correlate divergence with geographic and demographic occurrences. When historical data are absent (that is, the overwhelming majority), viral sequence sampling on a time scale commensurate with the rate of substitution permits the inference of the times of subtype divergence. Currently, researchers use two strategies to approach this task, both requiring strong conditions on the molecular clock assumption of substitution rate. As the underlying structure of the substitution rate process at the time of subtype divergence is not understood and likely highly variable, we present a simple method that estimates rates of substitution, and from there, times of divergence, without use of an assumed molecular clock. We accomplish this by blending estimates of the substitution rate for triplets of dated sequences where each sequence draws from a distinct viral subtype, providing a zeroth-order approximation for the rate between subtypes. As an example, we calculate the time of divergence for three genes among influenza subtypes A-H3N2 and B using subtype C as an outgroup. We show a time of divergence approximately 100 years ago, substantially more recent than previous estimates which range from 250 to 3800 years ago.

Highlights

  • Precise estimates are sorely lacking for dating the emergence and divergence of viral subtypes

  • We demonstrate the advantage of our triplet estimator through analysis of influenza A-H3N2/B subtype divergence using the hemagglutinin (HA), matrix protein (MP) and non-structural (NS) genes

  • Each analysis is performed on 60 gene sequences constructed from 20 genomes each drawn from influenza subtypes A-H3N2, B and C

Read more

Summary

Introduction

Precise estimates are sorely lacking for dating the emergence and divergence of viral subtypes. Improved estimates equip epidemiologists and virologists to begin to correlate these important establishing events with historical demographic changes, geographical invasions and zoonoses, the transferring of a virus from one host species to another [7,1,25]. Archeological sequence data can furnish accurate dates and show that substantial genomic changes associate with geographical invasion and zoonosis [14,17]. Systematic studies characterize the substitution process and substitution rate process of several classes of viral subtypes in, for example, Dengue, influenza subtype A, human immunodeficiency virus (HIV) and the virus responsible for sudden acute respiratory syndrome (SARS). In Dengue, where a single subtype simultaneously inhabits two hosts (humans and Aedes aegypti) in a persistent (page number not for citation purposes)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.