Abstract

The applicability of the post-IR IRSL single-aliquot regenerative-dose protocol (termed pIRIR protocol) has been tested on K-rich feldspar from recent coastal sediment samples (<500 a) from the southern North Sea coast and southern Baltic Sea coast. The most suitable post-IR IRSL (pIRIR) stimulation temperature is found to be 150 °C by using a preheat temperature of 180 °C. For this pIRIR stimulation temperature, a detectable pIRIR signal is obtained and the residual dose is minimized. Furthermore, anomalous fading is found to be negligible in the pIRIR150 signal for our young samples whereas the fading rates for the conventional IRSL signal measured at 50 °C (IRSL50) is between 5 and 7%/decade. However, the pIRIR150 signal bleaches significantly slower compared to the IRSL50, according to bleaching experiments using daylight, solar simulator and IR diodes, although the residual doses of both signals are similar. The laboratory residual doses in perfectly bleached aliquots are variable from sample to sample and vary between 300 ± 170 and 800 ± 460 mGy for the pIRIR150. The precision of the residual dose determination is generally poor and causes large uncertainties on the residual subtracted ages. The laboratory residual doses alone cannot account for the observed overestimation in our two youngest samples (<70 a), indicating that the feldspar signals in these samples were presumably not fully bleached prior to aeolian or beach deposition. However, even if the age uncertainties are large we obtained pIRIR150 ages in agreement with independent age estimates for the two older samples, which are 70 and 390 years old.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call