Abstract

Abstract. Zoned hydrothermal monazite-(Ce) from Alpine-type fissures and clefts is used to gain new insights into the tectonic history of the Lepontine Dome in the Central Alps and the timing of deformation along the Rhone-Simplon Fault zone on the dome's western end. Hydrothermal monazites-(Ce) (re)crystallization ages directly date deformation that induces changes in physicochemical conditions of the fissure or cleft fluid. A total of 480 secondary ion mass spectrometry (SIMS) spot analyses from 20 individual crystals, including co-type material of the monazite-(Nd) type locality, record ages for the time of ∼19 to 2.7 Ma, with individual grains recording age ranges of 2 to 7.5 Myr. The combination of these age data with geometric considerations and spatial distribution across the Lepontine region gives a more precise young exhumation history for the area. At the northeastern and southwestern edges of the Lepontine Dome, units underwent hydrothermal monazite-(Ce) growth at 19–12.5 and 16.5–10.5 Ma, respectively, while crystallization of monazite-(Ce) in the eastern Lepontine Dome started later, at 15–10 Ma. Fissure monazite-(Ce) along the western limit of the dome reports younger ages of 13–7 Ma. A younger age group around 8–5 Ma is limited to fissures and clefts associated with the Simplon normal fault and related strike-slip faults such as the Rhone Fault. The data set shows that the monazite-(Ce) age record directly links the fluid-induced interaction between fissure mineral and host rock to the Lepontine Dome's evolution in space and time. A comparison between hydrothermal monazite-(Ce) and thermochronometric data suggest that hydrothermal monazite-(Ce) dating may allow us to identify areas of slow exhumation or cooling rates during ongoing tectonic activity.

Highlights

  • Metamorphic domes often experience a multiphase tectonometamorphic evolution (e.g., Schmid et al, 2004; Steck et al, 2013)

  • A comparison of monazite-(Ce) crystallization ages with ages obtained with thermochronometers, whose closure temperatures depend on the cooling rate, seems to allow for the identification of areas experiencing low cooling rates at the time of hydrothermal monazite growth

  • This is the case in the central region of the study area, where the youngest white mica cooling ages of 15.1±0.70 to 16.30 ± 0.23 min age (Ma) (Allaz et al, 2011) located west of sample DUTH 2 and south of sample LUCO 1 (Fig. 1) coincide with the earliest monazite-(Ce) crystallization dated at ca. 14.3 to 14.7 Ma, and zircon fission-track (ZFT) ages of 9.7 ± 0.5 Ma (Janots et al, 2009) coincide with the late phase of monazite-(Ce) age recording around 10 Ma

Read more

Summary

Introduction

Metamorphic domes often experience a multiphase tectonometamorphic evolution (e.g., Schmid et al, 2004; Steck et al, 2013).

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call