Abstract

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) was examined as a tool for measuring isotopic variation as a function of ablation depth in unpolished zircon from an Archaean metasediment specimen. This technique was able to identify micrometre‐thin (> 3 μm) isotopically distinct mineral domains characterised by ca. 100 Myr younger 207Pb/206Pb ages associated with 2s age uncertainties as low ~ 0.2%, as well as elevated U content relative to grain interiors (up to an order of magnitude). Our calculated drilling rate suggests that each laser pulse excavated depths of ~ 0.06 μm. Ages resolved through the LA‐ICP‐MS methods overlap the 2s uncertainties of 207Pb/206Pb ages measured using SIMS depth profiling on the same zircon population. The rims were further evinced by the detection of relative enrichment (> 3 orders of magnitude) in REE in the outermost micrometres of the same zircon, measured using a different and independent LA‐ICP‐MS depth profiling technique. We propose a LA‐ICP‐MS U–Pb technique capable of quickly identifying and quantifying rims, which are indication of late, yet geologically significant, fluid events that are otherwise undefined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call