Abstract

Optical remotely sensed data are typically discontinuous, with missing values due to cloud cover. Consequently, gap-filling solutions are needed for accurate crop phenology characterization. The here presented Decomposition and Analysis of Time Series software (DATimeS) expands established time series interpolation methods with a diversity of advanced machine learning fitting algorithms (e.g., Gaussian Process Regression: GPR) particularly effective for the reconstruction of multiple-seasons vegetation temporal patterns. DATimeS is freely available as a powerful image time series software that generates cloud-free composite maps and captures seasonal vegetation dynamics from regular or irregular satellite time series. This work describes the main features of DATimeS, and provides a demonstration case using Sentinel-2 Leaf Area Index time series data over a Spanish site. GPR resulted as an optimum fitting algorithm with most accurate gap-filling performance and associated uncertainties. DATimeS further quantified LAI fluctuations among multiple crop seasons and provided phenological indicators for specific crop types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call