Abstract

This research aims to evaluate the physical and mechanical performance of three types of hybrid composites made of date palm (Phoenix dactylifera L.) (DP), additional layers of cotton (DP/C) and Kevlar fibres (DP/K). The fibres were formed into flat sheets and employed as reinforcement layers embedded in a polyester matrix. Three-layer and five-layer hybrid composites were created using the hand layup method. The layers have alternative longitudinal–transversal orientation. The composites were investigated for density, thickness swelling (TS), water absorption (WA), flexural strength and modulus of elasticity (MOE) properties. Moreover, the composites were subjected to cycles of water immersion, freezing and drying, and the changes in mass and mechanical performance were analysed before and after the cyclic testing. The hybrid composite with Kevlar as the inner layers displayed better physical and mechanical properties when compared to the other two hybrid composites. A stereo-microscopic investigation revealed that poor adhesion between the layers of composites contributed to a reduction in the mechanical properties of DP/C and DP hybrid composites. The DP/C composite had the highest thickness swelling and water absorption, with the water uptake more pronounced than in the cases of the other composites. The hybridisation of date palms with Kevlar fibres improved the properties of the hybrid composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call