Abstract

In this paper, a new discrete-time adaptive iterative learning control (AILC) approach is presented to deal with nonsector nonlinearities by incorporating a recursive least-squares algorithm with a nonlinear data weighted coefficient. This scheme is also extended as a d-iteration-ahead adaptive iterative learning predictive control to address for multiple inputs multiple outputs (MIMO) nonlinear systems with unknown input gains. A major distinct feature of the presented methods is that the global stability result is obtained through Lyapunov analysis without assuming any linear growth condition on the nonlinearities. Another distinct feature is that the pointwise convergence of the presented methods is achieved over a finite interval without requiring any identical conditions on the initial states and reference trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.