Abstract
Purpose: To develop a clinical-radiomics model based on radiomics features extracted from magnetic resonance imaging (MRI) and clinicopathological factors for predicting the axillary pathologic complete response (apCR) in breast cancer (BC) patients with axillary lymph node (ALN) metastases. Materials and Methods: The MRI images and clinicopathological data of 248 eligible invasive BC patients at the Peking University First Hospital from 2013 to 2020 were included in this study. All patients received neoadjuvant chemotherapy (NAC) and the presence of ALN metastases was confirmed through cytology pre-NAC. The data from 2013 to 2018 were randomly divided into the training and validation sets in a ratio of 7:3 and the data from 2019 to 2020 served as the independent testing set. The following three types of prediction models were investigated in this study: 1) A clinical model: The model was built by independently predicting clinicopathological factors through logistic regression. 2) Radiomics models: We used an automatic segmentation model based on deep learning to segment the axillary areas, visible ALNs, and breast tumors on post-NAC dynamic contrast-enhanced-MRI. Radiomics features were then extracted from the region of interest (ROI). Radiomics models were built based on different ROIs or their combination. 3) A clinical-radiomics model: It was built by integrating radiomics features and independent predictive clinical factors by logistic regression. All models were assessed using a receiver operating characteristic curve analysis and by calculating the area under the curve (AUC). Results: The clinical model yielded AUC values of 0.759, 0.787, and 0.771 in the training, validation, and testing sets, respectively. The radiomics model based on the combination of MRI features of breast tumors and visible ALNs yielded the best AUC values of 0.894, 0.811, and 0.806 in the training, validation, and testing sets, respectively. The clinical-radiomics model yielded AUC values of 0.924, 0.851, and 0.878 in the training, validation, and testing sets, respectively, for predicting apCR. Conclusion: We developed a clinical-radiomics model by integrating radiomics features and clinical factors to predict apCR in BC patients with ALN metastases post-NAC. It may help the clinicians to screen out apCR patients to avoid lymph node dissection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.