Abstract

We have performed combined elastic neutron diffuse, electrical transport, specific heat and thermal conductivity measurements on the quasi-one-dimensional Ba3Co2O6(CO3)0.7 single crystal to characterize its transport properties. A modulated superstructure of polyatomic CO32– is formed, which not only interferes the electronic properties of this compound, but also reduces the thermal conductivity along the c-axis. Furthermore, a large magnetic entropy is observed to be contributed to the heat conduction. Our investigations reveal the influence of both structural and magnetic effects on its transport properties and suggest a theoretical improvement on the thermoelectric materials by building up superlattice with conducting ionic-group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.