Abstract

Despite the close linkage between extreme floods and snowmelt, particularly through rain-on-snow (ROS), hydrologic infrastructure is mostly designed based on standard precipitation Intensity-Duration-Frequency curves (PREC-IDF) that neglect snow processes in runoff generation. For snow-dominated regions, such simplification could result in substantial errors in estimating extreme events and infrastructure design risk. To address this long-standing problem, we applied the Next Generation IDF (NG-IDF) technique to estimate design basis extreme events for different durations and return periods in the conterminous United States (CONUS) to distinctly represent the contribution of rain, snowmelt, and ROS events to the amount of water reaching the land surface. A suite of datasets were developed to characterize the magnitude, trend, seasonality, and dominant mechanism of extreme events for over 200,000 locations. Infrastructure design risk associated with the use of PREC-IDF was estimated. Accuracy of the model simulations used in the analyses was confirmed by long-term snow data at over 200 Snowpack Telemetry stations. The presented spatially continuous datasets are readily usable and instrumental for supporting site-specific infrastructure design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.