Abstract
In many experiments that investigate auditory and speech processing in the brain using electroencephalography (EEG), the experimental paradigm is often lengthy and tedious. Typically, the experimenter errs on the side of including more data, more trials, and therefore conducting a longer task to ensure that the data are robust and effects are measurable. Recent studies used naturalistic stimuli to investigate the brain's response to individual or a combination of multiple speech features using system identification techniques, such as multivariate temporal receptive field (mTRF) analyses. The neural data collected from such experiments must be divided into a training set and a test set to fit and validate the mTRF weights. While a good strategy is clearly to collect as much data as is feasible, it is unclear how much data are needed to achieve stable results. Furthermore, it is unclear whether the specific stimulus used for mTRF fitting and the choice of feature representation affects how much data would be required for robust and generalizable results. Here, we used previously collected EEG data from our lab using sentence stimuli and movie stimuli as well as EEG data from an open-source dataset using audiobook stimuli to better understand how much data needs to be collected for naturalistic speech experiments measuring acoustic and phonetic tuning. We found that the EEG receptive field structure tested here stabilizes after collecting a training dataset of approximately 200 s of TIMIT sentences, around 600 s of movie trailers training set data, and approximately 460 s of audiobook training set data. Thus, we provide suggestions on the minimum amount of data that would be necessary for fitting mTRFs from naturalistic listening data. Our findings are motivated by highly practical concerns when working with children, patient populations, or others who may not tolerate long study sessions. These findings will aid future researchers who wish to study naturalistic speech processing in healthy and clinical populations while minimizing participant fatigue and retaining signal quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.