Abstract

This paper proposes a method to find super-stabilizing controllers for discrete-time linear systems that are consistent with a set of corrupted observations. The L-infinity bounded measurement noise introduces a bilinearity between the unknown plant parameters and noise terms. A super-stabilizing controller may be found by solving a feasibility problem involving a set of polynomial nonnegativity constraints in terms of the unknown plant parameters and noise terms. A sequence of sum-of-squares (SOS) programs in rising degree will yield a super-stabilizing controller if such a controller exists. Unfortunately, these SOS programs exhibit very poor scaling as the degree increases. A theorem of alternatives is employed to yield equivalent, convergent (under mild conditions), and more computationally tractable SOS programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.