Abstract

This paper studies the data-driven structural control of monopile wind turbine towers based on machine learning approach, by using an active tuned mass damper (TMD) located in the nacelle. The adaptive dynamic programming (ADP) approach is employed to obtain the optimal controller which is derived on the modern large-scale machine learning platform Tensorflow. The proposed network structure includes three simple three-layer neural networks (NNs), i.e. a plant network, a critic network, and an action network. The plant network is used to capture the fully nonlinear dynamics of the structural system while the action network is used to approximate the optimal controller. Their training requires the gradient information flowing through the whole network. The automatic differentiation is used in this paper for all the gradient derivations, which greatly improves the employed ADP algorithm’s ability in solving complex practical problems. The simulation results of structural control of monopile turbine towers show that on average the active TMD achieves 15% performance improvement on tower fatigue load reduction over a passive TMD, with small active power consumption (less than 0.24% of the turbine’s nominal power production). Besides, the controller design considers the trade-off between control performance and power consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.