Abstract
ABSTRACT The next generation of spectroscopic surveys is expected to provide spectra for hundreds of thousands of white dwarf (WD) candidates in the upcoming years. Currently, spectroscopic classification of white dwarfs is mostly done by visual inspection, requiring substantial amounts of expert attention. We propose a data-driven pipeline for fast, automatic selection, and spectroscopic classification of WD candidates, trained using spectroscopically confirmed objects with available Gaia astrometry, photometry, and Sloan Digital Sky Survey (SDSS) spectra with signal-to-noise ratios ≥9. The pipeline selects WD candidates with improved accuracy and completeness over existing algorithms, classifies their primary spectroscopic type with ${\gtrsim}90\ \hbox{per cent}$ accuracy, and spectroscopically detects main sequence companions with similar performance. We apply our pipeline to the Gaia Data Release 3 cross-matched with the SDSS Data Release 17 (DR17), identifying 424 096 high-confidence WD candidates and providing the first catalogue of automated and quantifiable classification for 36 523 WD spectra. Both the catalogue and pipeline are made available online. Such a tool will prove particularly useful for the undergoing SDSS-V survey, allowing for rapid classification of thousands of spectra at every data release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.