Abstract

Reasonable burden distribution matrix is one of important requirements that can realize low consumption, high efficiency, high quality and long campaign life of the blast furnace. This paper proposes a data-driven prediction model of adjusting the burden distribution matrix based on the improved multilayer extreme learning machine (ML-ELM) algorithm. The improved ML-ELM algorithm is based on our previously modified ML-ELM algorithm (named as PLS-ML-ELM) and the ensemble model. It is named as EPLS-ML-ELM. The PLS-ML-ELM algorithm uses the partial least square (PLS) method to improve the algebraic property of the last hidden layer output matrix for the ML-ELM algorithm. However, the PLS-ML-ELM algorithm may have different results in different trails of simulations. The ensemble model can overcome this problem. Moreover, it can improve the generalization performance. Hence, the EPLS-ML-ELM algorithm is consisted of several PLS-ML-ELMs. The real blast furnace data are used to testify the data-driven prediction model. Compared with other prediction models which are based on the SVM algorithm, the ELM algorithm, the ML-ELM algorithm and the PLS-ML-ELM algorithm, the simulation results demonstrate that the data-driven prediction model based on the EPLS-ML-ELM algorithm has better prediction accuracy and generalization performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.