Abstract

This work examines the state and parameter estimation problems for Stochastic Dynamic Neural Field (SDNF) models. Unlike other studies, we suggest a general approach based on the Galerkin method that reduces the SDNF model to a standard state-space representation. This naturally yields nonlinear continuous-discrete stochastic systems with complicated nonlinear dynamics and linear measurements of a high dimension because of a spatial approximation. This in turn paves a systematic way for a strong integration of nonlinear Bayesian filtering methods into mathematical neuroscience. Because of a high resolution utilized to keep an accurate spatial approximation, a key aspect of nonlinear filters to be derived for the SDNF models is their computational budgets. In this paper, we derive the sequential Itô-Taylor-based continuous-discrete Extended Kalman filter for state and parameter estimation of the SDNF models. The novel method processes each measurement vector in a component-like manner and, hence, avoids an inversion of a large matrix. Thus, the newly-derived sequential estimator is faster and, additionally, more numerically stable compared to the previously developed SDNF-oriented estimators. Besides, the novel filter is an adaptive method, i.e. it solves both problems, which are the state and parameter estimation, in parallel. Finally, the proposed method is applied to numerical examples to provide the comparative study and to show the effectiveness of our result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.