Abstract

AbstractRepresentation extraction is crucial in data‐driven process monitoring, and deep neural network (DNN) is an efficient tool for extracting representations from considerable process data. This study proposes a hierarchical representation learning (HRL) method that integrates the deep belief neural (DBN) network and support vector data description (SVDD) for efficient nonlinear chemical process fault diagnosis. First, hierarchical representations containing meaningful process information are generated through a DBN network by utilizing generally massive normal operating process data. Second, an SVDD‐based decision‐making system is constructed using generally small‐sized faulty data. Three experimental studies are then conducted. A comparison of results with those of several state‐of‐the‐art methods reveal the suitability of the HRL method for process monitoring due to its two main advantages. First, DNN has a superior representative ability and generates representations with richer process information than conventional data‐driven methods. Second, the HRL method utilizes available process data and is suitable for practical conditions in which considerable normal operating data but limited small‐sized faulty data are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.