Abstract
BackgroundMultivariate data-driven statistical approaches offer the opportunity to study multi-dimensional interdependences between a large set of biological parameters, such as high-dimensional brain imaging data. For gyrification, a putative marker of early neurodevelopment, direct comparisons of patterns among multiple psychiatric disorders and investigations of potential heterogeneity of gyrification within one disorder and a transdiagnostic characterization of neuroanatomical features are lacking. MethodsIn this study we used a data-driven, multivariate statistical approach to analyze cortical gyrification in a large cohort of N = 1028 patients with major psychiatric disorders (Major depressive disorder: n = 783, bipolar disorder: n = 129, schizoaffective disorder: n = 44, schizophrenia: n = 72) to identify cluster patterns of gyrification beyond diagnostic categories. ResultsCluster analysis applied on gyrification data of 68 brain regions (DK-40 atlas) identified three clusters showing difference in overall (global) gyrification and minor regional variation (regions). Newly, data-driven subgroups are further discriminative in cognition and transdiagnostic disease risk factors. ConclusionsResults indicate that gyrification is associated with transdiagnostic risk factors rather than diagnostic categories and further imply a more global role of gyrification related to mental health than a disorder specific one. Our findings support previous studies highlighting the importance of association cortices involved in psychopathology. Explorative, data-driven approaches like ours can help to elucidate if the brain imaging data on hand and its a priori applied grouping actually has the potential to find meaningful effects or if previous hypotheses about the phenotype as well as its grouping have to be revisited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.