Abstract
Abstract Manzala Lake, the largest of the Egyptian lakes, is affected qualitatively and quantitatively by drainage water that flows into the lake. This study investigated the capabilities of adaptive neuro-fuzzy inference system (ANFIS) to predict water quality parameters of drains associated with Manzala Lake, with emphasis on total phosphorus and total nitrogen. A combination of data sets was considered as input data for ANFIS models, including discharge, pH, total suspended solids, electrical conductivity, total dissolved solids, water temperature, dissolved oxygen and turbidity. The models were calibrated and validated against the measured data for the period from year 2001 to 2010. The performance of the models was measured using various prediction skill criteria. Results show that ANFIS models are capable of simulating the water quality parameters and provided reliable prediction of total phosphorus and total nitrogen, thus suggesting the suitability of the proposed model as a tool for onsite water quality evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.