Abstract

In this brief, an enhanced genetic back-propagation neural network with link switches (EGA-BPNN-LS) is proposed to address a data-driven modeling problem for gasification processes inside United Gas Improvement (UGI) gasifiers. The online-measured temperature of crude gas produced during the gasification processes plays a dominant role in the syngas industry; however, it is difficult to model temperature dynamics via first principles due to the practical complexity of the gasification process, especially as reflected by severe changes in the gas temperature resulting from infrequent manipulations of the gasifier in practice. The proposed data-driven modeling approach, EGA-BPNN-LS, incorporates an NN-LS, an EGA, and the Levenberg-Marquardt (LM) algorithm. The approach cannot only learn the relationships between the control input and the system output from historical data using an optimized network structure through a combination of EGA and NN-LS but also makes use of the networks gradient information via the LM algorithm. EGA-BPNN-LS is applied to a set of data collected from the field to model the UGI gasification processes, and the effectiveness of EGA-BPNN-LS is verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call