Abstract

Reactivity controlled compression ignition (RCCI) is a promising low temperature combustion (LTC) regime that offers lower nitrogen oxides (NOx), soot and particulate matter (PM) emissions along with higher combustion efficiency compared to conventional diesel engines. It is critical to control maximum pressure rise rate (MPRR) in RCCI engines in order to safely and efficiently operate at varying engine loads. In this paper, a data-driven modeling (DDM) approach using support vector machines (SVM) is adapted to develop a linear parameter-varying (LPV) representation of MPRR for RCCI combustion. This LPV representation is then used in the design of a model predictive controller (MPC) to control crank angle of 50% of fuel mass fraction burn (CA50) and indicated mean effective pressure (IMEP) while limiting the MPRR. The results show that the LPV-MPC control strategy can track CA50 and IMEP with mean tracking errors of 0.9 CAD and 4.7 kPa, respectively, while limiting the MPRR to the maximum allowable value of 5.8 bar/CAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.